
INTRODUCTION

1COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

USE CASE

LINEARLY SCALABLE,
“LOCAL” BURST BUFFER

High-performance computing applications consist of complex sets of processes that sometimes run

for weeks on massive supercomputers. When any of these processes is interrupted, this could

destroy the results of the entire compute job. This problem becomes worse as supercomputers

become more powerful. Therefore, parallel computing applications use the concept of check-

point-restart. This technique allows compute jobs to be restarted from the most recently saved

checkpoint.

Checkpoints are typically saved in a shared, parallel file system. As clusters become larger and the amount
of memory per node increases, each individual checkpoint becomes larger and either takes more time to
complete or requires a higher-performance file system. When a system is checkpointing, it’s not computing
– and often these large supercomputers have limited windows they are allowed to checkpoint in.
This limited amount of checkpoint time has traditionally forced administrators to choose between two “evils”:
to either perform less frequent checkpoints (meaning losing more time on a restart) or sizing the performance
of the file system to a very high write performance number that is not needed for general usage.
In recent years, another practice has emerged and is generally referred to as a “busrt buffer”. Instead of
making the entire file system meet a very large write performance requirement, a portion of the file system (or
in some cases, a separate file system) is configured to take a burst of write IO at a very high rate.

Once the burst (checkpoint) is complete, the written data is “drained” to the
larger, slower pool of storage making up the majority of the file system. This
allows checkpoints to finish rapidly so that systems meet SLAs and the time
between checkpoints is used to move the stored checkpoints to longer-term
storage pools.
When flash storage is used as the burst buffer pool it has the added advantage of
facilitating a faster restart (when needed) as checkpoint restarts often impose a
very large random read load on the underlying storage. Thus, many bust buffer
configurations are sized to hold at least two checkpoints so the most recent com-
pleted checkpoint is available for restart.

Memory

Burst Buffer

Parallel File System

Archive

Checkpoint Restart

Drain

Archive

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

USE CASELINEARLY SCALABLE, “LOCAL” BURST BUFFER

The centralized approach suffers in many ways:
• Cost - making a very large parallel file system
from multiple redundant (proprietary) controller
pairs is very expensive. Additionally, you must
build the entire system for peak bandwidth when
most time it is not being pushed very hard.
• Power (and cooling) - when using disk drives,
this uses a lot of power.
• Bottleneck - if you use flash to speed things up,
the controllers become the bottleneck.
On the positive side, any written checkpoint is
immediately preserved, useable.

Bursting to a temporary location seems attractive
in that you can scale the burst speed in unison
with compute hosts. You then drain the check-
point from all the individual hosts to a centralized
location at a reasonable bandwidth. This allows
the parallel file system to be built economically
for durability and capacity with reasonable
performance. The biggest problem with this
approach is that while the checkpoint remains on
the compute host’s local media, it is subject to
failure with the host itself – making the check-
point potentially useless.

There are many ways to build burst buffers for checkpoints but the goal is always the same: to complete the
checkpoint as fast as possible to get the cluster back to its main purpose, which is computing. The different
approaches largely fall into two categories:

BURST BUFFER METHODS

BOTH METHODS HAVE MAJOR WEAKNESSES.

BUILD THE FASTEST, CENTRALIZED STORAGE BASED,
PARALLEL FILE SYSTEM YOU CAN,

 UP TO THE SPEED YOU CAN AFFORD.

BURST TO A TEMPORARY LOCATION, PERHAPS LOCAL, AND
MOVE THE INDIVIDUAL HOST BURSTS TO A CENTRALIZED

LOCATION LATER.

2

THE NVMesh® “LOCAL” BURST BUFFER

Excelero NVMesh offers unmatched deployment flexibility on standard servers and components without the
need for additional storage servers or proprietary hardware - unlike other solutions.
Some solutions that integrate with IBM SpectrumScale (GPFS) and require IBM appliances – or at least dedi-
cated hardware. For other solutions integrated as hardware from some HPC vendors, you must buy from that
vendor, with proprietary HW and SW tied to the supercomputer you purchase.

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

USE CASELINEARLY SCALABLE, “LOCAL” BURST BUFFER

3

With NVMesh for burst buffer, you can source standard NVMe drives and can completely obviate the need for
proprietary hardware, and even dedicated storage appliances. It builds on the local burst buffer methodology
but with a unique advantage: it adds redundancy with centralized management while at the same time
preserving all compute resources for the applications themselves.

NVMesh and patented Remote Direct Drive Access (RDDA) technology allow you to logically disaggregate
NVMe drives in the compute nodes away from CPU resources. That is, though the local NVMe drive may be
used by remote compute nodes, that usage does not consume local CPU.

NVMesh® Software Components

(UNMODIFIED)
APPLICATIONS

INTELLIGENT
CLIENT BLOCK

DRIVER

R-NIC

NVMesh CLIENT(S)

NVMe
DRIVE(S)

R-NIC

TOPOLOGY
MANAGER

NVMesh
TARGET MODULE

NVMesh TARGET(S)(GUI, RESTful HTTP)

HIGH SPEED NETWORK

Thus, every compute node can have a local NVMe SSD (or multiple drives) and all the drives are pooled for
use by the cluster. In the most simplistic form, with something like Lustre - 1/2 of each drive is used as a local
burst buffer and 1/2 is reserved for the redundant copy of a peer. As a result, when a node fails, it's scratch
is preserved and accessible by an alternate node - any node on the fabric.
Each node has a local scratch space (let's say /scratch) mounted on one of these mirrors. When a checkpoint
is initiated, contents of the application memory are written to the locally mounted file system (/scratch) that
writes to the local drive, and mirrors to a peer. This happens for every node, simultaneously. If using 100Gb/s
fabric, in full duplex, this means each node would be bottlenecked at about 12GB/s BW. Thus, the bottleneck
will likely be your choice of NVMe drives, and how many. The main benefit is that you scale linearly with every
node. Depending on your choice of device, each device writes between 500MB/s and 2GB/s.

With a single a single high-performance NVMe device per compute node, at 2GB/s - a
host with 512GB of RAM would checkpoint in about 8-9 minutes. This is because each
drive will be taking in the local checkpoint plus the mirror of another node’s checkpoint.
All nodes can write simultaneously, so effectively, the entire cluster can checkpoint in 8
minutes regardless of the number of nodes - as long as "pairs" have at least 2GB/s of
network bandwidth to each other. With 2 NVMe devices per host, this time is cut in 1/2

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

USE CASELINEARLY SCALABLE, “LOCAL” BURST BUFFER

NVMesh® BENEFITS FOR BURST BUFFER

Petabyte-scale unified pool of high-performance flash retaining the speeds and laten-
cies of directly-attached media.
Supports large-scale modeling, simulation, analysis and visualization.
Visualizes supercomputer simulation data on 100s of compute nodes.
Finish check pointing faster and start running the job.
Achieve highest performance at the lowest price.
Leverage the full performance of your NVMe SSD’s at scale, over the network.
Scale your performance and capacity linearly.
Easy to manage & monitor, reduces the maintenance TCO.
Utilize hardware from any server, storage and network vendor, no vendor lock-in.

4

Once all nodes have completed, the local checkpoints can be transferred to a centralized (spinning) repository,
likely a parallel file system, at a much slower rate. For a 5000-node cluster, you could checkpoint in 8 minutes.
This would be at an effective rate of 5TB/s of bandwidth. With each node at 512GB, the total of all checkpoint
files would be 2.5PB. If your spinning disk Lustre file system was capable of 500GB/s, it would take about 90
minutes to copy the "local" (but protected) checkpoints to the Lustre file system. With 2TB NVMe drives, you
could store 2 checkpoints within the “local” burst buffer before you would have to drain one.

NVMesh gives you an extremely cost effective method to achieve unheard of burst buffer bandwidth by
adding commodity flash drives and NVMesh software to compute nodes and low latency network fabric that
you were going to buy for the supercomputer itself. It provides redundancy without impacting target CPUs.
There is no need for additional dedicated hardware or proprietary file system integrations as NVMesh looks
like a simple block device.

CONCLUSION

