
COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER

ACHIEVING EFFICIENT AND SCALABLE
DISTRIBUTED ERASURE CODING

WITHOUT THE PERFORMANCE PENALTY

Storage capacity and performance requirements are
higher than ever. The flash revolution enables
meeting both requirements without increasing, in
most cases even decreasing, the storage footprint.
This makes individual drives even more valuable as
they store more and more data, which requires
protection. Data protection can be achieved through
replication or erasure coding. Both methods have
their benefits and costs: mirroring has virtually no
impact on performance but there is a higher cost as
each copy requires more capacity. The cost/capaci-
ty calculation is very straightforward: you choose
the required level of protection (2 or 3 copies are
most common) and you know exactly how much
additional capacity will be required for this protec-
tion. Erasure coding drastically reduces the capaci-
ty requirement, for similar or better data protection
levels, but you have a performance trade-off. In this
paper, we will show you how to pay less for the

ERASURE CODING FOR SCALE-OUT, SHARED STORAGE INFRASTRUCTURES IN
CONVERGED DATA CENTERS: ACHIEVING HIGHER DATA PROTECTION LEVELS
AND RESOURCE UTILIZATION WITH REPLICATION-LIKE PERFORMANCE

SETTING THE STAGE: MIRRORING VS. ERASURE CODING IN SCALABLE STORAGE INFRASTRUCTURES

same level of protection, without performance
trade-off.

We do not claim solving this long-standing issue for
all cases. Instead we concentrate on large, scalable
storage infrastructure deployment and distributed,
scalable applications for which the mirroring tax is
especially glaring.

1

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER
ACHIEVING EFFICIENT AND SCALABLE DISTRIBUTED ERASURE
CODING WITHOUT THE PERFORMANCE PENALTY

The NVMe protocol specifically benefits flash

media since it is naturally lockless and reduces the
software stack overhead to a minimum. An addition-
al benefit for scale out storage deployments is the
protocol’s extension to media access over a
network - NVMe-over-Fabrics (NVMeoF) which is
naturally mapped onto RDMA fabric protocols like
Infiniband or RoCE.
For the longest time, storage architectures have
been using intermediaries between the actual stor-
age media and the clients: "storage controllers".
These controllers implement a variety of data
services, cached and controlled access to the data.
The cost of this additional layer was outweighed by
the additional features and data efficiency they
provided. However, with the new NVMe-based flash
drives, the sheer amount of performance one can
get from even a handful of such drives is so high any
intermediary CPU becomes an unacceptable bottle-
neck. This is especially the case for flexible
scale-out storage infrastructures.

There are many existing applications that treat the
block storage layer as a persistence layer for
memory cache. In such case the storage access
optimization is for bandwidth and not for latency
which brings the transaction size to be in the range
of hundreds of kilobytes to single megabytes. The
popular Lustre filesystem is one such example - the
default size for storage access is 4MB.

In recent years, in-memory processing has gained
popularity across the industry with applications in
scientific computing such as rendering and analyt-
ics. These solutions require persistence of in-mem-
ory information. Here, once again, the bandwidth of
storage access has the highest priority and there-
fore storage access sizes tend to be at least
128KB. Burst buffer based on IBM Spectrum Scale
is a nice example of such case.

Building HW accelerators and/or embedded solu-
tions to offload storage controller functionality
from CPUs and bring it closer to the media. The
overall package, consisting of several drives and
FPGAs/HW accelerators/embedded CPUs, is then
connected to the datacenter network.

Removing the intermediary altogether by moving
the functionality provided by the storage control-
lers to the client side and using the much larger
client compute resource pool to implement the
same functionality in software on the client side

In this paper we focus on the latter approach.

The solution to this problem usually follows one

of two directions:

2

THE BENEFITS OF CLIENT-SIDE ARCHITECTURES

TRENDS TOWARDS LARGER WRITES

(UNMODIFIED)
APPLICATIONS

INTELLIGENT
CLIENT BLOCK

DRIVER

R-NIC

NVMesh CLIENT(S)

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER
ACHIEVING EFFICIENT AND SCALABLE DISTRIBUTED ERASURE
CODING WITHOUT THE PERFORMANCE PENALTY

3

In a disaggregated model, specific “target” stor-
age nodes supply storage to the “client” compute
nodes. Target nodes can be based on JBOFs (Just a
Bunch of Flash) or on dedicated servers with a large
(usually at least 24) number of drives. To provide
access to this many drives, target nodes usually
have RNICs with up to eight 100Gb/s ports. Client
nodes will have local storage only for the operating
system and use RNICs of up to two 25Gb/s ports.

We will concentrate on the converged model
however the presented methods and conclu-
sions are applicable to the disaggregated
case as well.

We will consider two widely used models for scale-out storage deployment in modern data centers: converged

and disaggregated architectures. In both cases we assume mixed-use NVMe drives since they are frequently
written to: around 2GBps in a sequential write case and around 200K 4KB IOPS in a random write case. These
drives also provide ~800K random 4KB read IOPS.

MODELS FOR COMPARISON AND ANALYSIS

In a converged model, all compute nodes double
as storage nodes. typically, all nodes are standard
servers that have several NVMe drives and at least
two 25Gbps RNICs. The number of NVMe drives is
determined by the ability of the RNICs to use the full
performance provided by the drives, so we assume
4 drives per server (3 drives can drive 3*2GB/s =
6GB/s = 48Gb/s so almost 50Gb/s but this is a
stretch so 4-drive configuration makes more sense).
From a PCIe lane utilization perspective, having 4
drives make sense as well as they use 16 PCIe lanes
which, together with 8 lanes for the RNIC, can be
accommodated by most of the servers. A second
RNIC is typically added for redundancy purposes.

LOCAL STORAGE IN APPLICATION SERVER STORAGE IS CENTRALIZED

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER
ACHIEVING EFFICIENT AND SCALABLE DISTRIBUTED ERASURE
CODING WITHOUT THE PERFORMANCE PENALTY

4

For the highest write bandwidth, mirroring is an obvious choice. In large deployments the probability of a
single drive failure becomes a significant one, making 3-way mirroring a better choice from the reliability
perspective. However cost considerations may drive the decision to deploy 2-way mirroring. For the baseline
we will consider both cases:

REPLICATION-BASED RELIABILITY (MIRRORING)

Maximum client write bandwidth is approximately 3GB/s

Maximum client read bandwidth is approximately 6GB/s

Usable capacity is 50%

2-WAY MIRRORING:

Maximum client write bandwidth is approximately 2GB/s

Maximum client read bandwidth is approximately 6GB/s

Useable capacity is 33%

3-WAY MIRRORING:

Erasure coding is used to provide the same reliability as mirroring (replication) but with much higher

usable capacity from the same number of drives. The technique uses erasure codes to recreate the lost
data blocks in case of a drive failure. Since we assume a shared, client side storage infrastructure, the possi-
bilities of client side write caching are limited so in our model we assume row-based erasure codes like
Reed-Solomon (RS). These codes get more attention lately since there are both Intel x86 CPU instruction set
additions and RNIC-based accelerators reducing CPU tax of implementing RS-like erasure codes in the
datapath. In row-based erasure codes, there are two configuration parameters per “stripe”: N - the number
of data blocks under protection and P - the number of parity blocks. From a write operation perspective,
when one writes N data blocks it actually writes N+P so the larger N (given the same P), the more space-effi-
cient the configuration is. On the other hand, for write operations, it is important to note that if a subset of
N pages are re-written, the operation requires reading of at most N/2 pages which usually means much
higher latency of such write operation. So to increase write bandwidth, the configuration needs to be chosen
so that in most cases the full stripes of N blocks will be written. So we will analyze a very popular 8+2 config-
uration, which means that given a block size of 4KB any write operation containing multiples of 8*4KB=32KB
won’t require any read operation. Dual drive protection for every 8 pages is enough even by the most rigor-
ous standards.

From a reliability perspective it’s recommended to configure the system so that every drive in the RAID will
reside on a different server. It is not a problem to have several different RAID groups sharing the same serv-
ers as the reconstruction of failed drives is done independently per RAID group. This requirement can be
relaxed in the disaggregated scenario as JBOFs are usually built with higher reliability requirements, for

ERASURE CODING-BASED RELIABILITY (RAID6)

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER
ACHIEVING EFFICIENT AND SCALABLE DISTRIBUTED ERASURE
CODING WITHOUT THE PERFORMANCE PENALTY

5

As a baseline, we consider a client-based RAID6 system based on the NVMeoF protocol to access the

remote drives. We consider only write operations spanning multiples of 32KB in 8+2 configuration so each
drive resides on a different server for maximum availability. We may relax the last bit for disaggregated model
but it won’t change basic principles of operation. The main problem with RAID based on erasure coding is
that the write transaction is completed only when all 10 drives completed their operation. Since any interrup-
tion can leave the data in an inconsistent state (a “write hole” situation when the parity blocks don’t reflect
the data) the widely used solution is to keep a “journal” - a place where either the old or the new data is
persisted until the transaction is completed. Then, in a case of disk failure or any other transaction interrup-
tion, a recovery operation is possible. Such recovery will either roll the transaction forward or backward in a
consistent manner (‘consistent’ in this context means that read operations following the write will consis-
tently bring the same data). As the journal writes need to be persistent, we can allocate a journal area on
every drive and use NVMeoF writes to write to journal in the same manner the write operations are
performed. In this case there is no need for remotely accessible persistent memory devices like NVRAMs,
NVDIMMs or battery-backed RAM.

In such setup each 32KB write operation is performed in 2 phases, each one consisting of 8+2 writes.
Overall 80KB are written, meaning that a client can push up to 6GB/s * (32/80) = 2.4GB/s effective write
bandwidth from network perspective. From the target side, each drive is capable of 200K * 4KB = 800MB/s
write bandwidth but since we write twice, the effective write bandwidth of a RAID group becomes 800MB/s
* ½ * 8 = 3.2GB/s. Don’t forget that the directions of write operation from client and target side don’t interfere
with each other.

In a converged scenario, if we consider 10 servers with 4 drives each as described above, we will have 4
RAID groups so the overall write bandwidth on the target side will be 4 * 3.2GB/s = 12.8GB/s. On the client
side, these 10 servers could consume 10 * 2.4GB/s = 24GB/s. So the overall system write bandwidth is
unbalanced. However, the unused network bandwidth can be used to read from the drives: each server
receives 800MB/s * 4 = 3.2GB/s data while sending the same amount of network bandwidth to support this
level of write performance. This means that all clients can use 10 * (6-3.2)GB/s = 28GB/s read bandwidth
while the 40 drives are able to provide at least 120GB/s in random read performance.

 Summary (10 server configuration):

 Combined 12.8GB/s Write bandwidth
 Combined 28GB/s Read bandwidth

ERASURE CODING - BASELINE

COPYRIGHT © 2018 | INFO@EXCELERO.COM | WWW.EXCELERO.COM

WHITE PAPER
ACHIEVING EFFICIENT AND SCALABLE DISTRIBUTED ERASURE
CODING WITHOUT THE PERFORMANCE PENALTY

6

As NVMesh controls where the information is written on the target side, it can use the same bounce buffer
when writing to both journal and data blocks. This means that a client needs only half the network bandwidth
for the same effective write bandwidth. This implies

If we want to have an even higher write bandwidth we can use NVMe drives supporting Persistent Memory
Region (PMR), which is already previewed by some drive vendors and will be part of NVMe standard v1.4.
This is a flash-backed part of a Controller Memory Buffer - effectively a persistent memory on each drive
which can be used for RDMA. If a drive supports PMR, NVMesh can use it as bounce buffers for write trans-
actions transforming PMR into journal area per drive and eliminate the need for an additional write to a drive.
In this case a RAID Group will be able to support twice the bandwidth - 6.4GB/s. So 4 such groups will be
able to provide 25.6GB/s write bandwidth. Each client will need to supply 2.56GB/s * (40/32) = 3.2GB/s

HOW NVMESH MAKES THIS CONFIGURATION MUCH MORE BALANCED AND EFFICIENT?

MIRRORING COMPARISON

CONCLUSION

Summary (10 server configuration):

Combined 12.8GB/s Write bandwidth
Combined 44GB/s Read bandwidth

network bandwidth to support this write band-
width. This leaves 2.8GB/s for the read bandwidth.
Together with the single network traffic this means
the configuration is able to support:

Summary (10 server configuration):

Combined 25.6GB/s Write bandwidth
Combined 28GB/s Read bandwidth
Usable capacity for all cases approaches 80%

To achieve the same level of protection, one needs 3-way mirroring which allows to reach only 20GB/s com-
bined write bandwidth without leaving anything for read bandwidth since it consumes the full 6GB/s avail-
able by the RNIC.
With reduced protection and 2-way mirroring we can get 30GB/s combined write bandwidth but without leav-
ing any space for additional read bandwidth.

For a converged, scale-out data center, leveraging shared software-defined storage, cost-ef-

ficient standard servers, RNICs and NVMe drives, we can reach mirror-level write bandwidth

with better protection and more balanced performance profile.

that for 1.28GB/s write bandwidth a client will pay
with only 1.28GB/s * (40/32) = 1.6GB/s network
bandwidth, effectively rising the consumable read
bandwidth to 10 * (6-1.6)GB/s = 44GB/s.

