

Table of Contents
Introduction 4

Architectural Foundations 4

Benefits of NVMesh EC 4

Node and Drive Failure Protection 4

Scalability 4

Elastic Logical Volume Management 5

Support for Heterogeneous Hardware 5

ELECT Volume Requirements 5

Performant Random Read Operations 5

Conserving Write Endurance of QLC drives 5

Design 5

A Multi-Tiered Volume 6

Metadata Handling 6

MetaData Volumes 7

Cache Handling 7

Copy-on-Write (CoW) Cache Collision Solution 7

New Capabilities 8

Endurance-Sensitive Volume Layout 8

Fine-Granularity Writes to RAID-1 Volume 8

Proof of Concept 8

Limitations 8

Setup 9

Tests 9

Single Thread Sequential 512KB Writes 10

Multiple Sequential 512KB Writes 11

Multiple 4KB Read Streams 11

Multiple 64KB Read Streams 12

Writing During Multiple 64KB Read Stream 12

4KB Read Latency During Writes 13

File System Level Test - Multi-Stream Copying of Many Small Files 13

Discussion 14

Comparison to Solutions w/o Optane Drives 14

QLC Endurance Improvement 15

Summary 15

1 Introduction

There are two outliers in the spectrum of persistent storage drives: high-performance, low-latency

Optane drives and read-intensive, low-cost and high-capacity QLC drives with PLC drives on the

horizon. Currently, Excelero is concentrated on the mainstream TLC drives for NVMesh development.

These drives provide the balance between sufficiently good write performance, excellent read

performance and competitive cost structure, and therefore are suitable for most tasks.

However, the unique properties of the combination of Optane and QLC drives can be very effectively

used for some workloads especially the ones that require massive random read capacity and ability

to sustain bursts of writes. The modern Deep Learning training phase is a great example of such a

workload.

2 Architectural Foundations

Intel QLC drives provide an excellent opportunity to create a cost efficient and, at the same time,

performant and scalable solution when combined with NVMesh Distributed Erasure Coding (EC). This

was the main driving force behind the ELECT project. The chosen approach preserves the main

advantages of NVMesh’s distributed EC while allowing it to use QLC drives. NVMesh EC uses TLC

drives with long blocks (4096+8B) support to store metadata in a persistent way without any need for

additional hardware. Intel QLC drives don’t support long blocks. Therefore, we use QLC drives to

store the data and Optane drives for the metadata. This design does not fork the subsequent

development of the TLC-based EC code and allows for the two to co-exist. This approach will be

described in the Design section below.

2.1 Benefits of NVMesh EC

We ensure that the combination of NVMesh EC and QLC/Optane preserve the benefits of the former

while retaining the better economics of the latter.

2.1.1 Node and Drive Failure Protection
Unlike most of the solutions in the market, NVMesh EC is fully distributed so it can protect from

multiple node failures as well as from multiple drive failures. This allows it to be used in converged,

disaggregated and mixed deployments without requiring dedicated storage servers.

2.1.2 Scalability
NVMesh was built from the outset with scalability in mind. Both control and management planes are

distributed. There is no cross-talk between the clients. The client side of NVMesh implements the

data services but remains stateless, keeping state on the target side. The NVMesh protocol allows

bypassing the CPUs on the NVMesh targets ensuring unlimited and highly efficient scalability with

each client talking only to the targets holding pieces of volumes this client is attached to. Targets

communicate with relevant peers to implement a highly-available and scalable control plane.

NVMesh has been successfully deployed in clusters with hundreds of physical servers and thousands

of virtualized ones demonstrating linear scalability and almost perfect resource utilization.

2.1.3 Elastic Logical Volume Management
NVMesh allows carving logical volumes out of a physical NVMe pool according to various parameters

related to failure domains and separation criteria. For example, it is possible to create an EC volume

such that no two parts of it will reside on the same server or no more than two drives will reside in

the same power zone. On the other hand, thanks to a flexible policy, NVMesh enables creating small

footprint, single target volumes protecting only from drive failures.

Adding Optane drives into the mix allows using them not only as a metadata store for the ELECT

volumes, but also to create super low latency volumes carved out of Optane drives.

2.1.4 Support for Heterogeneous Hardware
Being a purely software solution, NVMesh supports heterogeneous servers, drives and network

equipment in the same cluster. This allows customers to start small and grow the storage solution

according to the growing needs of a customer, which is especially relevant in such a dynamic and

growing field as Machine Learning, while retaining the same beneficial price-performance ratio.

2.2 ELECT Volume Requirements

To make ELECT a natural enhancement of NVMesh, the same architectural principles have been

employed. For example, stateless clients and efficient scalability mean there is no stateful client

caching or passing of information between clients to coordinate cache use. On the other hand,

incorporation of the new media requires special design considerations which we explore in this

section.

2.2.1 Performant Random Read Operations
We already covered the exciting applications of QLC-based all flash solutions in the realms of AI and

Analytics due to the excellent random read characteristics of QLC drives. The proposed architecture

should expose these performance capabilities as much as possible while introducing the required

data protection.

2.2.2 Conserving Write Endurance of QLC drives
The main limitation of QLC drives is their low write endurance. Therefore, one of the main emphasis

of the design is to conserve write endurance and lower the Write Amplification Factor (WAF) of the

solution.

3 Design

The current NVMesh EC volume implementation does not require or assume a write cache or a layer

to absorb and combine write operations. As is, this won’t work well for QLC-backed volumes as it

may generate small scattered writes that are detrimental for QLC drives. QLC write endurance

characteristics require writing in large blocks and in as sequential a manner as possible. Therefore, it

is imperative to have a write cache layer that will aggregate writes before writing them to QLC drives.

As NVMesh does not support thin provisioning yet, this should work well for high locality write

workloads. These constitute the majority of high performance write scenarios with transactional

databases being the only real exception.

3.1 A Multi-Tiered Volume

To conserve development efforts and leverage NVMesh’s product quality, we chose to implement

the write cache layer as a separate RAID-1 volume based on Optane drives while the QLC part is

implemented on an EC volume with separated metadata. Therefore, the ELECT volume itself is

represented by a new NVMesh entity called a Multi-Tiered Volume. The following diagram presents

this solution.

3.2 Metadata Handling

Next we describe how the different types of existing and new metadata are handled. There are four

types of metadata maintained in NVMesh in the 64-bits of metadata space attached to each page for

4KB+8B drives as well as in the separate Journal partition on each drive supporting an EC volume, as

follows:

End-to-end Data Integrity Checking (EDIC)​ - this metadata plays a role similar to T10-DIF, to help

protect the data from data rot and to enable End-to-End Data Integrity Checking.

Dirty Bit Persistency​ - this metadata keeps track of the blocks to recover when the system is required

to write on a degraded volume.

Transactional Data Journal​ - this is used to store data being written before it is committed to an EC

Volume blockset, i.e.a unit under a single lock. In this design, the Optane-based Write Cache volume

performs this role so we don’t need this metadata.

Bidirectional Journal-to-Data Links​ - these are used to connect the journaled transaction with the

destination of the corresponding Write operation for roll-forward during recovery. In the presented

design, reads go to the Optane-based cache until the data is fully written to the underlying blockset.

Thus, we avoid using these links and can always roll-forward from the cache.

Reads and writes into NVMesh volumes are broken into single blockset operations. Therefore, the

only metadata we keep from the NVMesh EC is much smaller than a 4KB page per full blockset of

1MB (in case of an 8+2+2 configuration) or 512KB (in the 4+2+2 case). The metadata required for

bookkeeping of the Multi-Tiered Volumes fits into a single metadata page and requires only a single

access to the Metadata Volume per read operation and per write to the Write Cache. The

background destage operations writing the blocksets to the QLC drives will need to perform an

additional write operation, but these are not on the critical synchronous path.

3.2.1 MetaData Volumes
In order to support fast, scalable, multi-client and coherent access to the metadata, we decided to

implement it as a RAID-1 NVMesh volume on the Optane drives naming it the MetaData Volume or

MDV. The 4KB-based access pattern to this volume will require a new feature to get the maximum

performance in case of simultaneous access from multiple clients. This feature is discussed below in

the New Capabilities section.

3.3 Cache Handling

We design a scalable system for multi-client high-performance scenarios. As shown in the

Multi-Tiered Volume design diagram, the Write Cache allocations for all clients are parts of a Write

Cache Volume or WCV which is a regular RAID-1 or RAID-10 NVMesh volume. Any client attaching to

an ELECT volume will use a “sub-volume”,essentially an extent, carved out from this volume. A server

side mechanism persists these allocations, similar to the mechanism used for the journal range

allocation persistence used in regular NVMesh EC volumes. This volume can be extended like any

other regular NVMesh volume providing more Write Cache space in case there are a large number of

clients accessing ELECT volumes.

3.3.1 Copy-on-Write (CoW) Cache Collision Solution
Preventing inter-client communication for real scalability is a staple of the NVMesh architecture. So,

we faced a dilemma on how to approach the write cache collision issue without breaking the

scalability. Write cache collision happens when a write to a blockset, the basic locking or handling

unit of the underlying QLC EC volume, was committed to client A’s write cache area, but not yet

destaged to the QLC drives and the same blockset is being written at the same time from client B. For

true performance at scale, we do not want to serialize multi-client writes on destage. However rare

such a scenario is, such an approach is against NVMesh architecture principles.

So the solution is that when client B discovers a write cache collision from the MDV page, it performs

a regular read of the current data,actually from client A’s write cache, and transfers ownership of the

whole new data for this blockset to itself. When the time comes to destage the data, client B will

destage both the data originally written to client A’s write cache area and client B’s new data.

Since blocksets are small, 1MB in the 8+2+2 case, this scenario should be very rare in any real world

usage, but the approach to it demonstrates the flexibility of NVMesh’s design with its stateless

client/stateful servers approach for scalable and performant storage.

3.4 New Capabilities

There are new capabilities required from different volumes that together constitute a Multi-Tiered

Volume:

3.4.1 Endurance-Sensitive Volume Layout
The current NVMesh EC implementation is focused on minimizing the need for reads during write

operations aligned with RAID parameters to get consistently low latency even when writing to a

distributed EC volume. he volume layout is row-first, effectively ensuring that a 32KB write to an EC

8+2 volume will be written to all drives without the need to read existing data at all. However, this

approach does not work well for QLC drives where the additional latency of read operations is

masked by the Write Cache layer and so is of less importance than large write IO operations in case

of non-full destage from the Write Cache.

On the other hand, from the write endurance perspective, it is very important to perform such a

32KB write to one or two drives as 1x32KB or 2x16KB writes since this improves the internal Write

Amplification Factor (WAF) of the drives. Therefore, together with ELECT volumes, we have

developed the ability to specify the height of an EC stripe in 4KB pages in NVMesh EC adjusting the

layout to the particular drive WAF characteristics.

3.4.2 Fine-Granularity Writes to RAID-1 Volume
As mentioned above, clients access the MDV with a 4KB granularity pretty much randomly. Since we

leave the NVMesh locking mechanism untouched, this means the operations lock 32 metadata pages

with a single lock. So we need to make sure that the duration of this lock is minimal. Taking into

account that these are metadata operations usually meant to update several fields in a page, we

designed a server-side operation which performs the required update under lock and releases the

lock without passing the data back and forth between the client and the server under lock. The

updated data is returned to the client for bookkeeping and metadata caching.

4 Proof of Concept

We developed a limited-scope version of ELECT volume support to verify and demonstrate the design

and to be able to share its benefits, limitations and roadmap with selected partners to align our

development plans with the field.

4.1 Limitations

The PoC version has several limitations, which need to be taken into account when assessing the

testing results.

Single client: ​We did not implement the CoW mechanism to cope with multiple clients so all the tests

are performed from a single client, actually from a converged client.

Separate metadata areas for existing and new types of metadata: ​The existing NVMesh EC

metadata (the two types of it we keep for ELECT) was not merged with the Write Cache bookkeeping

metadata designed for ELECT volumes, which affects write performance since we need to write to

two different pages in the MDV.

No endurance-sensitive volume layout for QLC EC volumes: ​This means we cannot demonstrate on

the current PoC the efficient, WAF-sensitive partial destage from the Write Cache Volume. Instead,

all writes are performed for the full blocksets (512KB ones in case of 4+2+2 which is what is tested in

the PoC setup) and so the missing data is read from the QLC drives before destaging to ensure drive

endurance is preserved.

No management support for ELECT volumes: ​All the underlying NVMesh volumes are created

manually and connected together manually in the NVMesh client itself. Eventually, the user will only

see the ELECT volume itself, but in the PoC we are able to observe all 3 NVMesh volumes comprising

the tested ELECT volume:

4.2 Setup

For the tests below we used an Intel server based on the S2600WFT (Wolf Pass) board with dual Intel

Xeon 6226R Gold CPUs and 6 Intel D5-P4320 7.68TB QLC drives and 2 Intel DC-P4800X Optane drives

in a 4+2+2 configuration.

The NVMesh version used for the PoC was based on NVMesh 2.0.3 with the corresponding additions

to support multi-tiered ELECT volumes, as described above.

4.3 Tests

In the context of this PoC, we concentrated on block level tests to show that the results adhere to the

design and behave according to the performance of the underlying drives and to the limitations of

the PoC code. In addition we conducted a file system level test to show advantages of ELECT volumes

for a typical AI small file dataset case.

In all the tests, the destage code is tweaked to run all the time to demonstrate the worst case

scenario in which the write operations are extended beyond the burst capacity of the write cache.

Single Thread Sequential 512KB Writes
We start from a single sequential write test of 512KB (full blocksets). This test should provide a

baseline for the write performance and demonstrate consistent performance:

The ability to observe the underlying volume provides clear demonstration that the data written to

the ELECT volume ‘mtv’ is being written to the Write Cache volume ‘wcv’ first and then is being read

from it to be destaged to the QLC EC volume ‘qlc’. The metadata access is very small compared to the

data operations.

The average latency is under 0.5 msec and is very consistent. The bandwidth is consistent as well

during the whole test.

Multiple Sequential 512KB Writes
This is very similar to how real world applications work on top of a cached file system.

The limitation on bandwidth comes from the Optane drives which are limited to 1.4 GB/s. Once again

the performance is very consistent.

Multiple 4KB Read Streams
With the current generation of Optane drives, their ~500K 4K read IOPS per drive (or 1M from RAID-1

volume) limits the read performance of this scenario to 1M reads from the ELECT volume and this is

exactly what we demonstrate in this random read test.

The next generation of Optane drives drastically raises the 4K IOPS to over 1.6M per drive. Since 6

QLC drives provide much more IOPS than this, in the GA solution we should expect excellent random

read performance even from the smaller setups.

Multiple 64KB Read Streams
When increasing the size of a read IO to 64KB, the performance limit shifts from the Optane to the

QLC drive. This is clearly seen in this test where we’re able to get a sustained bandwidth of 15GB/s

from 6 QLC drives, very close to their random read specification.

Writing During Multiple 64KB Read Stream
We combined the previous test with a single sequential write stream to see how write pressure

affects read bandwidth and latency. The following snapshot demonstrates that while the writes

reached over 1GB/s reads reduced only by 30% to 10GB/s and the read latency remained <1ms.

4KB Read Latency During Writes
This is one of the most widely used tests in the industry, assessing how write pressure affects latency

of single read threads, to ensure that reads won’t wait for writes to complete so the transactional

latency, and therefore the number of transactions per seconds, won’t be affected by writes from

another client.

Single-thread read latency is 240 usecs and with a write load of over 70% of maximum, the latency

grows to 308 usecs, i.e. an impact of less than 30%. It also remains very stable with minimal jitter.

File System Level Test - Multi-Stream Copying of Many Small Files
We filtered just over a million small files (between 6 and 30 KB each with an average size of 18KB)

from a real world Imagenet dataset widely used for Deep Learning benchmarks. All files were put in a

single directory. The test consists of 20 simultaneous copy operations of this directory into separate

directories on an ELECT 8+2+2 volume. This test is constructed to stress the destage and write

aggregation mechanisms. With the PoC code it took 22 minutes and 31 seconds to complete all 20

copy operations which means that from a user perspective it ran with over 266 MB/s average

external bandwidth.

As can be seen from the snapshot below, QLC operations were mostly writes which means that the

write aggregation to the Write Cache entries worked as designed.

The system also demonstrated consistent bandwidth during the whole test.

4.4 Discussion

The tests demonstrate that the design passes the basic block level tests and provides a solid

foundation for the work on a GA version of the product with this functionality. Most of the measured

numbers were sufficiently close to the limits calculated from the drive specifications and the test

results variability was very low for PoC-level code.

4.4.1 Comparison to Solutions w/o Optane Drives
To put the presented results into perspective, we compare them to best-case baseline scenarios that

do not involve any fast and persistent aggregation layer, regardless of whether they are based upon

battery-backed DRAM, NVRAM or Optane. The latter provides the best price/performance ratio.

For read operations, it is clear that ideally the performance should be limited only by the drives

comprising the EC volume. This is the case with NVMesh EC volumes based on TLC drives with

metadata support. Read performance of QLC drives is very similar to TLC drives. In the worst case, for

every read operation we need to access the Metadata Volume at least once. This means we need to

have drives that satisfy the following inequality, with D = 10 for an 8+2+2 configuration:

2 x [Optane Read IOPS] > D x [QLC Read IOPS]

For the current family of Optane drives (48xx), this clearly does not hold true. Optane drive’s read

IOPS are slightly lower than QLC read IOPS. However, the next generation of Optane drives provides

much higher performance, especially for 512B blocks. How much improvement is required to satisfy

the equation above? An improvement of 6x for 512B read compared to the current Optane drives

will be enough. According to industry reports, the new Optane drives will provide even more than

this.

For write operations, aggregation of stripes in the Optane-based Write Cache Volume allows

performing full stripe write operations to the underlying EC volume unlike the baseline case. The

advantage of this is clearly demonstrated by the file system test above where the performance

shown by the ELECT volume is very close to the maximum 300 MB/s limited by the file system

capabilities, as observed by us on any volume type, even unprotected striped layouts akin to RAID-0.

This is higher than 240 MB/s, which is the maximum observed from an EC volume based on TLC

drives without such an aggregation layer.

4.4.2 QLC Endurance Improvement
I've run an intensive testing of Intel's QLC drive's endurance under various regimes using ​Intel MAS

tool​ and the result is as follows:

1. Our first GA solution essentially transforms any random write mix to a small number (4-8) of

streams of 128KB writes per drive. Under such a regime the drive reaches 0.22-0.25 DWPD

with 4-4.1 WAF (write amplification factor). This is the expected DWPD of our first GA (up

from 0.1 DWPD of the raw drive).

2. It's important to emphasize that sequential write accesses (no matter what size) are

transformed to sequential 128KB writes and under this assumption our GA solution will reach

1 DPWD with 1.11 WAF.

3. When we complete the development of NVMesh Thin Provisioning currently planned to 2021

the projected DWPD of the solution should become closer to 0.8-1 DPWD since we'll be able

to transform any random write sequence to several sequential write streams of 128KB

5 Summary

NVMesh ELECT volumes provide an important extension to the architecture of the most performant

and scalable block storage on the market. Their excellent price/performance characteristics allow

expanding the applicability of all-NVMe deployments to the performance hungry use cases of AI,

Machine Learning and Data Analytics, even where previously the economics forced customers to

accept trade-offs.

We demonstrated the viability of the proposed architecture on a series of block level tests

demonstrating excellent performance from a small converged single-server. Even with 64KB reads

such a small setup reaches 15 GB/s bandwidth with a millisecond latency. Such a server can be easily

deployed using NVMe-over-Fabrics access to support multiple GPU servers without levying a heavy

storage tax and allowing easy and seamless expansion of the storage capacity when needed.

https://www.intel.com/content/www/us/en/support/articles/000055927/memory-and-storage.html
https://www.intel.com/content/www/us/en/support/articles/000055927/memory-and-storage.html

